Ternary Content Addressable Memory

Chiao-Ying, Huang
Department of Electronics Engineering
National Chiao Tung University
saomyhunag@gmail.com
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Introduction

- Conceptual view of a CAM.
 - Single cycle throughput → high speed.
 - Popular in network routers.
 - IP4 vs. IP6 → larger capacity CAMs.
 - Power consumption issue.
 - Leakage current in advanced technologies.
 - Conventional CAM search operation.
 - Priority encoder is used.
Introduction – cont.

- Two types of CAM cells: Binary vs. Ternary
 - Both can store 0 and 1 state.
 - Ternary CAMs have additional “X” state.

- CAM cell = Storage + Comparison Circuit.
 - Storage circuit is implemented by SRAM.
 - Comparison circuit is implemented in different manners corresponding to each cell types.
 - NOR type, NAND type, Hybrid type etc.

If don’t-care data equals to 1, the match-line (ML) will bypass and be discharged to ground.
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Core cell

- NOR cell: Multiple cells are connected in parallel forming a word by shorting the ML together with adjacent cells.
 - ML remains high in match state and discharge when miss.
 - The comparison circuit is a XNOR logic gate.
 - High search speed, high power consumption.

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>SL=0</th>
<th>SL=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D=1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
NAND cell: Multiple cells are connected in series forming a word by joining the \(ML_n \) and \(ML_{n+1} \).
- ML discharges to ground in match state and remains high in miss.
- The comparison circuit is a XNOR logic gate.
- Power efficient with the penalty of low speed.
Core cell – cont.

- Ternary cell: stores an additional don’t care value.

<table>
<thead>
<tr>
<th>Stored Value</th>
<th>Stored</th>
<th>Search Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0 1 0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

- Ternary core cell for NOR-type cell

- Ternary core cell for NAND-type cell
Core cell – cont.

- Modified Ternary cell:
 - Reducing leakage power in advanced technology.
 - Destroy the prefix data to reduce the LP when state is “X”.
 - Without performance penalty.
 - Two main part of leakage current:
 - Subthreshold leakage
 - Gate leakage

<table>
<thead>
<tr>
<th>M</th>
<th>D</th>
<th>S</th>
<th>State</th>
<th>ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>L</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>H</td>
</tr>
</tbody>
</table>

Conventional TCAM cell components and the corresponding state table
Core cell – cont.

- Modified Ternary cell (cont.) :
 - Proposed scheme: Dynamic Power Source (DPS)
 - Extension of power gated scheme.
 - No need of extra gated MOS → saving area.
 - Can reduce subthreshold leakage current largely.
 - Modified XOR logic to prevent short-circuit path in comparison circuit.

Conventional TCAM cell components

DPS\textsubscript{VDD} Implementation

DPS\textsubscript{GND} Implementation

Chiao-Ying, Huang

NCTU IEE5009 Memory Systems 2012
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Hybrid - type matchline structure

- Combine the performance advantages of the NOR-type CAM and the power efficiency of the NAND-type CAM.
- With a marginal area overhead and largely reduces dynamic power and improves search performance.
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Matchline sensing scheme

Conventional matchline sensing scheme:
- Power issue severe.

![Conventional matchline sensing scheme diagram](image)

Low swing scheme:
- Reduce ML voltage swing \(\rightarrow\) reduce dynamic power.
- Potentially increasing speed.
- Challenge: no externally generated referenced voltage.

![Low swing scheme diagram](image)
Matchline sensing scheme – cont.

- **Selective precharge scheme:**
 - A 144-bit word divided into 3-bit part and remaining 141-bit part.
 - Saves about 88% of the matchline power.
 - Worst case: all initial bits matched, thus eliminating any power saving.

- **Pipeline scheme:**
 - Extension of selective precharge scheme.
 - Drawbacks:
 - Increased latency and area overhead.
 - Enable the use of hierarchical searchlines.
Matchline sensing scheme – cont.

- **Butterfly matchline scheme:**
 - Increasing parallelism of search operation → obtains high speed.
 - XOR-based conditional keeper → provides noise tolerant.
 - Interlaced pipeline connection → reduces power consumption.

<table>
<thead>
<tr>
<th>ML precharge</th>
<th>Floating node</th>
<th>Control Signal of keeper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low, to speed up the process of pre-charge</td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td>High, to avoid the impact on performance at the very beginning of evaluation</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>High, keeper should be off</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low, keeper should be activated to enhance the capability of noise immunity</td>
</tr>
</tbody>
</table>

Critical path

![Diagram of XOR-based Conditional Keeper](image)
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Searchline sensing scheme

- **Conventional sensing scheme:**
 - Apply with precharge matchline high scheme.
 - Power consumption is big and searchline cap is large → bad.

- **Eliminating searchline precharge scheme:**
 - For matchline precharged low scheme.
 - In typical case, 50% reduction in searchline power.
Searchline sensing scheme

Don’t care based Hierarchical searchline:

- Decrease the switching capacitances and switching activities.
- No search time overhead.
- Global-Searchline (GBL) vs. Local-Searchline (LSL).
 - GBLs activate every cycle.
 - LSLs activate depending on don’t care cells.
Outline

- Introduction
- Core cell
- Hybrid - type matchline structure
- Matchline sensing scheme
- Searchline sensing scheme
- Conclusion
- Reference
Conclusion

- Two basic CAM cells, NOR/NAND type.
- Differences between CAM and TCAM.
- Power saving techniques based on cell structure, matchline scheme, searchline scheme.
- Dynamic power reduction is not enough in advanced technology, leakage power reduction has become more and more important.
- 3D stacked TCAM is another research in the future.
 - A Low-Power Monolithically Stacked 3D-TCAM, ISCAS, 2008
Reference