17.1 A 0.6V 1.5GHz 84Mb SRAM Design in 14nm FinFET CMOS Technology

Eric Karl, Zheng Guo, James W. Conary, Jeffrey L. Miller, Yong-Gee Nq, Satyanand Nalam, Daeyeon Kim, John Keane, Uddalak Bhattacharya, Kevin Zhang

Intel, Hillsboro, OR

The growth of battery-powered mobile and wearable devices has increased the importance of low-power operation and cost in system-on-a-chip (SoC) design. Supply-voltage scaling is the predominant approach to active power reduction for SoC design, including voltage scaling for on-die memory given increasing levels of memory integration. SRAM can limit the minimum operating voltage \(V_{MIN} \) of a design, often leading to the introduction of separate voltage supplies for on-die memory. Additional supplies increase platform cost, and operating memory at higher voltage leads to increased power consumption. The introduction of trigate devices at the 22nm technology node delivered superior short channel effects and subthreshold slope relative to existing bulk planar device technology enabling reduction in threshold voltage within a fixed leakage constraint. Lower transistor \(V_{th} \) improvements to random device variability, and assist circuits to overcome device-size quantization enabled a >150mV reduction in \(V_{MIN} \) [1]. At the 14nm technology node, FinFET device-size quantization remains a challenge for compact 6T SRAM bitcells with minimum-size transistors. Careful co-optimization between technology and design of memory-assist circuits is required in order to deliver dense, low-power memory operation at low voltages. In this paper, we present an 84Mb SRAM array design with wide-voltage-range operation in a 14nm logic technology featuring 2nd-generation FinFET transistors.

Figure 17.1.1 shows a layout diagram of a 0.050μm\(^2\) high-density 6T SRAM cell (HDC) and a 0.0588μm\(^2\) low voltage 6T SRAM cell (LVC) in 14nm FinFET technology [2]. HDC has a fin ratio of 1:1.1 (PU:PG:PD) and LVC features a larger PD device at 1:1.2, to provide improved read stability and performance at low voltage. Dedicated single-patterning techniques have extended the capabilities of 193nm immersion lithography on critical layers to deliver a 0.5x scaling rate to comparable 22nm SRAM bitcells. Contacted gate pitch is 70nm and fin pitch is 42nm for the technology. Figure 17.1.1 highlights recently reported SRAM designs from 16nm, 14nm and 10nm technologies [1-6]. The 0.050μm\(^2\) HDC cell in this work is the smallest reported SRAM cell at any technology node among the cited work. Despite significant geometric scaling from the 22nm node, optimizations to fin profile and subfin doping on the 2nd-generation FinFETs enable a nearly 2x reduction in device threshold voltage variation [2], a critical factor for 6T SRAM \(V_{MIN} \).

The HDC SRAM cell has a 1:1 PG to PD ratio, leading to degraded stability from charge injection during read operations. Wordline underdrive (WLUD) is utilized in the HDC arrays as an area-efficient approach to enhance read-stability margin at the cost of cell performance [1]. Suppressed BL techniques, such as the DNR circuit, also improve read stability, but are effective across a limited range of process technology targets and the implementation leads to more area overhead and higher power consumption than WLUD [3]. The LVC SRAM, with a 1.2 PG to PD ratio, has adequate read-stability margin and does not require WLUD, enabling higher performance at low voltage. Both HDC and LVC have a 1.1 ratio between the PG and PD devices, which limits write margin at low voltage due to contention between these two devices, motivating the use of a write-assist circuit. In Figure 17.1.2, a column-based TVC circuit is shown, utilizing a NMOS device to discharge the memory cell supply (VCS) to weaken the PU transistor during writes [1]. Self-selected cells along the written column face an instability during writes [1]. Half-selected cells along the written column face an instability due to charge injection during read operations. Wordline underdrive (WLUD) is utilized in Figure 17.1.3 details a charge-share transient voltage collapse circuit (CS-TVC) that delivers high performance at low voltage, compatibility with WLUD across a wide range of technology targets and reduces active power consumption relative to the TVC circuit in Fig. 17.1.2. The CS-TVC switch circuits are located at the edges of a 256-row column, breaking the memory cell supply into 2 distinct 128b regions per column. Multiple switch circuits within a column are connected to a CS-TVC capacitor to reduce area, as only one switch within the column is active during write. The CS-TVC capacitor contains a primary node and 2 secondary nodes enabled by CSCAP[1:0] to modulate the effective capacitance. NMOS devices driven by the DISCHARGE signal are used to reset the GSCLAP node to VSS before a write operation. The CS-TVC operation begins with a self-timed pulse (TVC PULSE) aligned to the rising edge of WL that simultaneously disconnects the selected VCS region from VCC, clamps the NMOS devices in the CS-TVC capacitor, and connects VCS to the pre-discharged GSCLAP node. Charge is balanced through a PMOS switch between the VCS region selected and GSCLAP, resulting in a temporary suppression of the VCS node to improve write margin. The falling edge of the TVC pulse completes the operation and restores the VCS voltage level to VCC.

Figure 17.1.4 shows the organization of the 68kb LVC block and 17kb LVC subarray, featuring 258xBL and 136xWL in a butterfly array configuration. In the logical I/O, 4 CS-TVC switch regions share one CS-TVC capacitor bank positioned in the center of the column. The 17kb LVC sub-array with conventional TVC and CS-TVC achieve bit densities of 11.6 and 11.3 Mb/mm\(^2\), respectively. The array efficiency is 71.6% and 69.8%, respectively for conventional TVC and CS-TVC, with the CS-TVC circuitry adding 6.5% to the 17kb sub-array area. The HDCA array features a denser 512xBL column I/O design with a bit density of 14.5 Mb/mm\(^2\) and 76.2% array efficiency.

In Figure 17.1.5, 50MHz and 1GHz LVC SRAM write-\(V_{MIN} \) measurements are shown for different TVC methods. CS-TVC features a charge-share collapse to 48% of VCC and conventional TVC with a strong bias setting (SB-TVC) provides a clamped voltage level at 44% of VCC using the circuit from Fig. 17.1.2. Pulsed TVC (P-TVC) features a shallow collapse defined by a narrow pulsewidth achievable by either the CS-TVC or the conventional TVC circuit. The deeper collapse of CS-TVC and SB-TVC enable 40mV lower \(V_{MIN} \) at 50MHz. At 1GHz, the deeper collapse and required recovery for these designs increases \(V_{MIN} \) by 30mV for CS-TVC and 75mV for SB-TVC relative to P-TVC. By eliminating static crowbar current, the CS-TVC circuit reduces active energy by 24% relative to SB-TVC for a comparable \(V_{MIN} \) and VCS collapse level. P-TVC has write-energy overhead of 43% relative to no assist, but is difficult to implement across a range of array configurations.

Figure 17.1.6 shows the 14nm LVC \(V_{MIN} \) is 0.6V at the 90th percentile, an 80mV reduction compared with a comparable LVC array on 22nm [1]. The 14nm HDC \(V_{MIN} \) is 0.7V at the 90th percentile, within 15 to 20mV of the 22nm LVC SRAM technology. The voltage-frequency shmoo of LVC SRAM at 95°C demonstrates 1.5GHz performance at 0.6V and wide-range operation to 1V. Figure 17.1.7 shows a die micrograph of a 14nm test vehicle with HDC and LVC SRAM arrays with fuse, PLL and PBIST circuitry.

References:

Figure 17.1.1: 14nm HDC and LVC SRAM bitcells.

Figure 17.1.2: Conventional transient voltage collapse (TVC) write assist circuit.

Figure 17.1.3: Charge-share transient voltage collapse circuit (CS-TVC) and operation waveforms.

Figure 17.1.4: 548Kb SRAM architecture and density summary.

Figure 17.1.5: P-TVC, SB-TVC and CS-TVC V_{MIN} and write energy comparison.

Figure 17.1.6: HDC and LVC V_{MIN} and LVC voltage-frequency shmoo.
Figure 17.1.7: Die micrograph of 14nm test chip with HDC and LVC SRAM arrays.