National Chiao-Tung University

Department of Electronics Engineering & Institute of Electronics





Low Power and Reliable Interconnection with Self-Corrected Green Coding Scheme and Self-Calibrated Voltage Scaling Technique for Network-on-Chip






Student : Wei-Li Fang

Advisor : Dr. Wei Hwang



Abstract

Because of the shrinking of processing technology, the on-chip interconnect will dominate performance of hole chip in future. Network on Chip design have been considered an effective solution to integrate multiprocessor system. In this thesis, a joint bus and error correction coding, self-corrected green coding scheme is proposed. Self-corrected green coding scheme is constructed by two stages, which are triplication error correction coding stage and green bus coding stage. Triplication ECC provides a more reliable mechanism to advanced technologies. Moreover, in view of lower latency of decoder, it has rapid correction ability to reduce the physical transfer unit size of switch fabrics by self-corrected in bit level. The green bus coding employs more energy reduction by a joint triplication bus power model for crosstalk avoidance. In addition, the circuitry of green bus coding is more simple and effective. This approach not only makes the NoC applications tolerant against transient malfunctions, but also realizes energy efficiency. Based on proposed coding scheme, a self-calibrated voltage scaling technique is proposed, which adjusts the operation voltage by two stages. The crosstalk-aware test error detection stage detects the error by maximal aggressor fault test patterns in the testing mode. The run-time error detection stage detects errors by double sampling data checking technique; moreover, it provides the tolerance to timing variations. According to the error detections, the self-calibrated voltage scaling technique can reduce the voltage swing for energy reduction and guarantee the reliability at the same time.